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Abstract-TCP is currently the dominate congestion control 
protocol for the Internet. However, as the Internet evolves into a 
high-speed wired-cum-wireless hybrid network, performance 
degradation problems of TCP have appeared, such as 
underutilizing high-speed links, regarding wireless loss as 
congestion signal, and unfairness among flows with different 
RTTs. In order to improve the quality of service for such high-
speed hybrid networks, we propose a router-assisted congestion 
control protocol called Quick Flow Control Protocol (QFCP). 
Performance evaluation using Network Simulator NS-2 shows 
that QFCP can significantly shorten flow completion time, fairly 
allocate bandwidth resource, and be robust to non-congestion-
related loss. 

I. INTRODUCTION 

TCP [1] has been the dominate congestion control protocol 
for the Internet since 1980’s. However, it also demonstrates 
some performance degradation in nowadays high-speed wired-
cum-wireless networks. First, TCP’s Additive Increase 
Multiplicative Decrease (AIMD) algorithm is too conservative 
for high-speed or long-delay links. After experiencing a 
packet loss, TCP needs to take many Round-Trip Times 
(RTTs) to recover the high throughput as it only increases the 
sending window by one packet per RTT. Flows often need 
more time to finish than expected by the users and large 
capacity of the bandwidth is wasted. Second, TCP assumes 
any packet loss as congestion signal, but it can not distinguish 
non-congestion-related loss (transmission bit error) from 
congestion-related loss (router buffer overflow) leading to 
underutilization of wireless link. Third, TCP can not fairly 
allocate bandwidth resource among competing flows with 
different RTTs, or among uploading and downloading flows 
in IEEE 802.11 Wireless LAN. 

As more and more high-speed (e.g., optical fibers), long-
delay (e.g., satellite links, trans-ocean cables), and wireless 
(e.g., WLAN, CDMA) links will be employed in the Internet, 
this situation will continue and may even be worse. Users will 
complain for the poor quality of service though they have paid 
for the costly network equipments or services. If we want to 
improve the Quality of Service (QoS) for congestion control 
in high-speed wired-cum-wireless networks, we must design 
an advanced mechanism to utilize the network resource more 
efficiently and more fairly. There are many QoS criteria 
regarding to network communication such as delay jitter, drop 
rate, priority service and so on. Here we will focus on three 

aspects that the Internet users may be most interested in, i.e., 
flow completion time, fair bandwidth allocation, and 
robustness to wireless loss. 

The remainder of the paper is organized as follows. Section 
II introduces the control architecture and algorithm of the 
proposed congestion control protocol. Section III evaluates the 
performance of the protocol using Network Simulator NS-2 
and compares it with other existing protocols. Section IV 
concludes our work. 

II. PROTOCOL DESIGN 

Quick Flow Control Protocol (QFCP) [2] is a router-
assisted congestion control protocol for high-speed wired-
cum-wireless networks. There are some other router-assisted 
protocols such as Quick-Start [3], XCP [4], and RCP [5]. The 
common design incentive is that routers are the places where 
congestion happens and with explicit feedback from routers 
we should be able to utilize the network resource more 
efficiently. 

Unlike XCP, QFCP gives per-flow feedback on flow rate 
instead of per-packet feedback on window adjustment. There 
are three fields in the QFCP header of each packet: RTT, rate-
request, and rate-feedback. We use a similar framework of 
Quick-Start but we extend the rate-request-and-grant 
mechanism to the whole lifetime of a flow: (1) The sender sets 
the initial value of rate-request field in the header of each 
outgoing packet to be the desired sending rate of this sender; 
(2) When the packet reaches a router, the router compares the 
value in rate-request field with the router’s own fair-share rate 
and puts the smaller one back into that field; (3) On receiving 
the packet, the receiver copies the rate-request field into the 
rate-feedback field of the corresponding ACK packet and 
sends it back to the sender; (4) When the sender receives the 
ACK packet, it reads the value in the rate-feedback field and 
adjusts its sending rate accordingly. 

A router maintains a fair-share rate R for each output 
interface. This rate R is the maximum rate allowed for flows 
going through this interface during the current control interval 
T. T is set to be a moving average of RTTs of seen packets. At 
the beginning of every control interval the QFCP controller 
estimates the number of flows traversing this interface as: 
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where y is the input traffic rate measured in the last interval T, 
and R(t-T) is the flow rate feedback given in the last control 
interval. Then the controller updates its fair-share rate R as: 
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, (2) 

where C is the capacity of the output link, q is the minimum 
queue length observed in the last control period T, and β is a 
constant of 0.5. When a packet arrives at a router, the 
controller compares the value in the rate-request field with its 
own fair-share rate R and copies the smaller value back into 
that field. This rate-request field will eventually be copied into 
the rate-feedback field of the corresponding ACK packet and 
sent back to the sender by the receiver. On receiving an ACK, 
the sender reads the feedback and adjusts its congestion 
window as: 

( )MSSRTTfeedbackcwnd ,max ⋅= , (3) 
where feedback is the routers’ feedback on flow rate, RTT is 
the round-trip time measured by the sender, and MSS is the 
maximum segment size. Thus, flows can send data at the 
highest rate allowed by all routers along the path, while 
routers periodically update the fair-share rate based on flow 
number estimation. 
 Due to the inability to set the exact capacity of a wireless 
link, we need to design an adaptive algorithm that can finds 
and sets this capacity parameter by itself. We observe that the 
output traffic rate can be used to estimate the link capacity for 
an active network interface and we add the following formula 
in QFCP for link bandwidth probing: 
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where q is the minimum queue length in packets observed in 
the last control interval, output is the output traffic rate, and α 
is a constant of 0.1. The basic idea is as following: 
• If the minimum queue length q is greater than or equal to 

one packet, which means the output interface is busy and 
keeps sending data in the last control interval, then the 
output traffic rate can be a good estimation of the current 
link capacity. 

• If the minimum queue length is less than one packet, 
which means the output link is sometimes idle and 
underutilized during the last control interval, we can try to 
multiplicatively increase the link capacity estimation by a 
factor (1+α) and wait a control interval to see whether the 
queue is going to build up. 

For a sender in lossy wireless environment, it had better 
differentiate two kinds of packet loss: for non-congestion-
related loss (bit error), it should maintain the current window 
size; and for congestion-related loss (buffer overflow), it 
should slow down to prevent congestion collapse. 
Unfortunately, currently router-assisted congestion control 
protocols can not do such differentiation yet. For example, 
XCP simply inherits the standard TCP behavior when 
encountering packet loss [6]. That is, on receiving three 

duplicate ACKs, the congestion window cwnd is halved; and 
on retransmit timeout, cwnd is set to one. The assumption is 
that packet loss may reveal a congested non-XCP router in the 
path and transiting to standard TCP behavior is a conservative 
response. However, if we are sure that all routers along the 
path support router-assisted congestion control, such slow-
down reaction should be unnecessary for packet loss caused 
by bit error. 
 For TCP, the sender has to slow down on detecting packet 
loss because packet loss is the congestion signal for TCP. This 
is due to the design rationale of TCP congestion control: a 
TCP flow keeps increasing its sending rate and intentionally 
fills up the buffer of the bottleneck router to generate packets 
drops; through this approach TCP finds the available capacity 
of the path. But for router-assisted approach, since congestion 
information has already been wrapped in the special packet 
header and communicated to the sender, the sender should not 
insist treating packet loss as congestion signal now. In stead, it 
should use the information in the congestion header to adjust 
its congestion window. For example, in QFCP, if the loss is 
congestion-related, the rate feedback in subsequent ACK (or 
dup-ACK) will tell the sender to slow down; but if it is non-
congestion-related loss, the subsequent rate feedback will 
probably be similar to the current sending rate of this flow. 
 We suggest that separate the data reliability control from 
congestion control when receiving duplicate ACKs. When the 
sender receives a duplicate ACK, it suggests that a data packet 
has successfully reached the receiver but its sequence number 
is greater than that expected by the receiver. Thus, for data 
reliability control, upon reception of 3 duplicate ACKs, the 
sender should retransmit the packet with the expected 
sequence number. While for congestion control, when a QFCP 
sender receives a duplicate ACK, it adjusts the congestion 
window to: 

dupACKnumRTTfeedbackcwnd _+⋅=  (5) 
where feedback is the rate feedback from routers, RTT is the 
sender’s estimation of round-trip time, num_dupACK is the 
number of duplicate ACKs received. The inherent idea is that 
the sender temporarily keeps the successfully-transferred but 
not-in-order packets in buffer and opens the congestion 
window so that it can continue sending data at the router-
allowed rate. The counter num_dupACK is reset to zero when 
a new ACK packet arrives and cumulatively acknowledges all 
data packets sent before the detection of the loss. Note that we 
do not address complicate situations such as loss of the 
retransmission packet here and leave them for future study. 
 XCP is a little different from QFCP. QFCP directly uses the 
fair-share flow rate as the feedback and this rate is not 
changed during the current control interval. The rate feedback 
information in any single ACK is sufficient for us to compute 
the target window size. But for XCP, we may not be able to 
compute the correct window size base on the feedback when 
encountering loss. Because in XCP, each ACK carries unique 
per-packet feedback information on window adjustment and 
the information carried on lost packets may not be negligible. 
Any packet loss will cause mismatching between the actual 
window size of the sender and the target window size 
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expected by the routers. XCP-r [7] suggests computing the 
congestion window size at the receiver side and sending the 
value back to the sender through ACK packets. This 
modification on XCP only deals with ACK loss but packet 
loss on the forward path may still cause the window 
mismatching problem. Another possible solution is to keep the 
window unchanged on non-congestion loss and halving the 
window on congestion loss. But firstly we need to distinguish 
the two kinds of loss in XCP. Intuitively we may say if the 
feedback is positive, it is non-congestion-related loss; and if 
the feedback is negative, it is congestion-related loss. 
However, the feedback is also used for fairness control. A 
negative feedback may possibly only want to change the 
flow’s rate toward fair-share rate and may not necessarily 
suggest congestion. Halving the cwnd or change cwnd to 1 is 
too aggressive for this case. But if the loss is congestion-
related, window adjusting only based on feedback may be not 
enough since some feedback on window reduction may be lost. 
In sum, unlike QFCP, it is not so easy for XCP to differentiate 
the two kinds of packet loss based on feedback information. 
 While for packet loss event triggered by retransmit timeout, 
since no feedback information available at this instant and the 
loss may be caused by severe congestion, conservatively set 
congestion window to one should be better. And if this is not a 
congestion loss, any subsequent ACK will recover the 
congestion window to the proper size in QFCP. 
 In addition, if a router drops packets due to buffer overflow, 
it should also sum up the number of dropped packets and use 
the virtual queue length when running the control algorithm. 
That is, substitute q in the algorithm with 

dropnumqqvirtual __ += . (6) 
Thus, if packets are dropped by routers, the feedback 
computed using the virtual queue length can still precisely 
reflect the congestion condition. 

III. PERFORMANCE EVALUATION 

A. Flow Completion Time 
Research on the Internet traffic has revealed an important 

feature at the flow level: most of the flows are very short, 
while a small number of long flows account for a large portion 
of the traffic [8], [9]. This is also known as the heavy-tailed 
distribution. For fixed-size flows (e.g., FTP, HTTP), the most 
attractive performance criterion is the flow completion time 
(FCT). Here we simulate a scenario where a large number of 
Poison-arriving Pareto-distributed-size flows share a single 
bottleneck link of 150 Mbps. The total flow number is 60000. 
The common Round-Trip Propagation Delay (RTPD) of all 
flows is 100 ms. Flows arrive as a Poison process with an 
average rate of 625 flows per second. The packet size is 1000 
bytes. The flow sizes are Pareto distributed with a mean of 30 
packets and a shape parameter of 1.2. Thus, the offered traffic 
load on the bottleneck link can be estimated as: 8 ∗ 
packet_size ∗ mean_flow_size ∗ flow_arrival_rate / bandwidth 
= 1. We record the size and completion time for each flow in 
the simulation, then average the flow completion time for 
flows with the same size. 
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(a) all flows (b) flows with size < 3000 packets 

Fig. 1. Average flow completion time (AFCT) vs. flow sizes for Poison-
arriving Pareto-distributed-size flows. (a) is the global picture for all flows. 
(b) is a close look at short flows 

Note that in order to make the result more accurate, we 
don’t wait for all flows to finish, but stop the simulation just 
on the arrival of the 60000th flow. The reason is that the 
offered traffic load may drop after the arrival of the last flow, 
since all active flows are going to finish but no new flow is 
going to join. Each simulation is conducted for each protocol: 
TCP-Reno, XCP [4], RCP [5], and QFCP. The scenario 
settings and the input data (i.e., the size and arriving time of 
each flow) are identical for each simulation. The results show 
that the Average Flow Completion Time (AFCT) in QFCP is 
significantly shorter than that in TCP, XCP or RCP. 

For TCP, the AFCT is very oscillatory again the flow size. 
The reason is that although the exponential increase of 
congestion window in Slow Start does help some short flows 
finish quickly, the duration of other flows are prolonged due 
to packet loss. And we should point out that Slow Start is not 
a good way to shorten the duration of flows, because it 
actually does not know the proper initial sending rate but just 
intends to fill up the buffer of routers and cause packet losses, 
which prolongs the flow duration. 

For XCP, it does not use Slow Start. Instead, when new 
flows join, XCP tries to reclaim the bandwidth from the 
ongoing flows and reallocate it to the new flows little by little. 
For short flows they may finish before reaching the fair 
sending rate. That is why the completion time of short flows in 
XCP is the longest. However, the AFCT against flow size in 
XCP is more stable than in TCP because XCP flows 
experience fewer packet losses. 

For RCP and QFCP, both of them give a high initial 
sending rate to new flows based on the feedback from routers 
and help short flows finish quickly. However, the formula 
used in RCP to estimate the number of flows holds only when 
the input traffic just fills up the link capacity C, otherwise it 
leads to wrong estimation of the flow number. This wrong 
estimation of flow number makes the rate allocation in RCP 
under-optimum and thus prolongs the FCT in general 
compared with QFCP. 

B. Fairness of Bandwidth Allocation 
In this simulation there are twelve flows start transferring 

data at time 0. Flows are randomly generated in both 
directions, either from a node in the wired network to a 
wireless node in the IEEE 802.11 WLAN (downloading) or 
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opposite (uploading). The flows’ round-trip propagation 
delays vary from 40 ms to 370 ms. We use the Jain Fairness 
Index [10] to evaluate the fairness of bandwidth allocation 
among competing flows: 
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where xi is the average throughput of flow i during a interval 
and n is the number of flows. We compute the Jain Fairness 
Index every 1 second. 
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(a) Congestion window of 12 QFCP flows 
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(b) Congestion window of 12 TCP flows 
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(c) Jain Fairness Index 

Fig. 2. Twelve flows in both directions sharing a wireless link 

For QFCP, although the wrong estimation of wireless link 
capacity causes some throughput oscillations at the beginning, 
its effect is alleviated shortly after 2-3 seconds since the 
probing algorithm in QFCP controller finds the correct 
bandwidth value (Fig. 2(a)). Then the bandwidth is allocated 
equally among flows because the same rate feedback is sent to 
all flows. The senders open their congestion window 
proportional to their RTTs (i.e., cwnd = feedback * RTT) and 
achieve good fairness on the throughput (Fig. 2(c)). 

TCP also has its embedded algorithm to probe the available 
bandwidth, which is the additive increase multiplicative 
decrease (AIMD) algorithm. AIMD has been proved that it 
can help flows with the same RTT achieve fairness on 
throughput. However, as shown in Fig. 2(b), TCP’s 
performance degrades significantly in this scenario. One 
reason is that flows with short RTTs grow their windows 
faster than flows with long RTTs (e.g., the different slopes of 
incensement in Fig. 2(b)). Another more important reason is 
that a wireless link is simplex, and downloading and 
uploading flows compete for this wireless channel. But all 
downloading flows have only one node (the base station) to 
contend for the media access while each uploading flow has 
its own node to contend. The result is that downloading flows 
are unable to gain their fair share of the wireless bandwidth 
using TCP and keep sending at very low rates. Fig. 2(c) 
confirms that TCP’s fairness index is low in this scenario. 
While for QFCP, since it takes control of all packets in both 
directions on simplex wireless links, it fairly allocates the 
bandwidth among all flows. 

C. Robustness to Wireless Loss 
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Fig. 3. One lossy flow competing with one lossless flow 

 
 This scenario tests for the protocol’s sensitivity to non-
congestion-related loss. A uniform loss model is injected into 
the wireless link so that it can randomly generate non-
congestion-related loss at a fixed probability. The packet loss 
rate we have investigated varies from 0.0001 to 0.1 and covers 
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most typical loss rates seen in a wireless network. Due to 
space restriction, here we just demonstrate typical results of 
packet loss rate = 0.01. The bandwidth parameter C is initially 
set to 1 Mbps since we do not know the exact bandwidth 
capacity for each wireless node and expect the probing 
algorithm to find it. The minimum round-trip time is 200 ms. 
We compare the performance of QFCP and XCP-b in this 
scenario. 
 XCP-b [11] is a XCP variant enhanced with an algorithm to 
probe the available bandwidth when the link capacity is 
unknown. However, it does not take packet loss into account. 
As shown in Fig. 3, XCP-b cannot maintain a large congestion 
window when bit-error packet loss happens randomly. Its 
congestion window is frequently halved or set to one due to 
packet loss. This window shrinking significantly reduces the 
flow rate and prevents the probing algorithm of XCP-b to 
work efficiently. Furthermore, when one lossy flow competes 
with one lossless flow, XCP-b treats the lossy flow as a 
congested flow and unfairly allocates bandwidth between 
them. 
 As mentioned before, packet loss is not treated as 
congestion signal in QFCP. It does not halve the window upon 
receiving three duplicate ACKs, so it can maintain a large 
window even in a lossy environment. However, sometimes 
packet loss is not recovered by the retransmission upon three 
duplicate ACKs and RTO may occur (e.g., loss of 
retransmission packet). In this case, since no router feedback 
carried on an ACK is available, QFCP conservatively set the 
window to one packet (e.g., around 17 seconds in Fig. 3). But 
if this is a non-congestion-related loss, any subsequent ACK 
will recover the window to the proper size. For the situation of 
one lossy flow competing with one lossless flow, QFCP can 
fairly allocate the bandwidth resource between them. This 
simulation shows that it is important to take care of non-
congestion-related loss when designing congestion control 
schemes for wireless environments. A bandwidth probing 
algorithm that works well on lossless link may fail on lossy 
links. 

IV. CONCLUSION 

Quality of Service has been studied extensively for real-
time multimedia flows. However, it is a little strange that the 
service quality of other common TCP flows (HTTP, FTP, 
email transfer, etc.) has seldom been studied. In this paper we 
point out that TCP suffers performance degradation in high-
speed wired-cum-wireless networks. In order to improve the 
QoS we propose a router-assisted congestion control protocol 
named Quick Flow Control Protocol (QFCP). Through 
simulations using NS-2 and compared with other existing 
protocols, we show that QFCP can significantly shorten flow 
completion time, allocate bandwidth resource fairly among 
competing flows, and be robust to non-congestion-related loss. 
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