
Improving Quality of Service for Congestion Control
in High-Speed Wired-cum-Wireless Networks

Jian Pu and Mounir Hamdi

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
{pujian, hamdi}@cse.ust.hk

Abstract-TCP is currently the dominate congestion control
protocol for the Internet. However, as the Internet evolves into a
high-speed wired-cum-wireless hybrid network, performance
degradation problems of TCP have appeared, such as
underutilizing high-speed links, regarding wireless loss as
congestion signal, and unfairness among flows with different
RTTs. In order to improve the quality of service for such high-
speed hybrid networks, we propose a router-assisted congestion
control protocol called Quick Flow Control Protocol (QFCP).
Performance evaluation using Network Simulator NS-2 shows
that QFCP can significantly shorten flow completion time, fairly
allocate bandwidth resource, and be robust to non-congestion-
related loss.

I. INTRODUCTION

TCP [1] has been the dominate congestion control protocol
for the Internet since 1980’s. However, it also demonstrates
some performance degradation in nowadays high-speed wired-
cum-wireless networks. First, TCP’s Additive Increase
Multiplicative Decrease (AIMD) algorithm is too conservative
for high-speed or long-delay links. After experiencing a
packet loss, TCP needs to take many Round-Trip Times
(RTTs) to recover the high throughput as it only increases the
sending window by one packet per RTT. Flows often need
more time to finish than expected by the users and large
capacity of the bandwidth is wasted. Second, TCP assumes
any packet loss as congestion signal, but it can not distinguish
non-congestion-related loss (transmission bit error) from
congestion-related loss (router buffer overflow) leading to
underutilization of wireless link. Third, TCP can not fairly
allocate bandwidth resource among competing flows with
different RTTs, or among uploading and downloading flows
in IEEE 802.11 Wireless LAN.

As more and more high-speed (e.g., optical fibers), long-
delay (e.g., satellite links, trans-ocean cables), and wireless
(e.g., WLAN, CDMA) links will be employed in the Internet,
this situation will continue and may even be worse. Users will
complain for the poor quality of service though they have paid
for the costly network equipments or services. If we want to
improve the Quality of Service (QoS) for congestion control
in high-speed wired-cum-wireless networks, we must design
an advanced mechanism to utilize the network resource more
efficiently and more fairly. There are many QoS criteria
regarding to network communication such as delay jitter, drop
rate, priority service and so on. Here we will focus on three

aspects that the Internet users may be most interested in, i.e.,
flow completion time, fair bandwidth allocation, and
robustness to wireless loss.

The remainder of the paper is organized as follows. Section
II introduces the control architecture and algorithm of the
proposed congestion control protocol. Section III evaluates the
performance of the protocol using Network Simulator NS-2
and compares it with other existing protocols. Section IV
concludes our work.

II. PROTOCOL DESIGN

Quick Flow Control Protocol (QFCP) [2] is a router-
assisted congestion control protocol for high-speed wired-
cum-wireless networks. There are some other router-assisted
protocols such as Quick-Start [3], XCP [4], and RCP [5]. The
common design incentive is that routers are the places where
congestion happens and with explicit feedback from routers
we should be able to utilize the network resource more
efficiently.

Unlike XCP, QFCP gives per-flow feedback on flow rate
instead of per-packet feedback on window adjustment. There
are three fields in the QFCP header of each packet: RTT, rate-
request, and rate-feedback. We use a similar framework of
Quick-Start but we extend the rate-request-and-grant
mechanism to the whole lifetime of a flow: (1) The sender sets
the initial value of rate-request field in the header of each
outgoing packet to be the desired sending rate of this sender;
(2) When the packet reaches a router, the router compares the
value in rate-request field with the router’s own fair-share rate
and puts the smaller one back into that field; (3) On receiving
the packet, the receiver copies the rate-request field into the
rate-feedback field of the corresponding ACK packet and
sends it back to the sender; (4) When the sender receives the
ACK packet, it reads the value in the rate-feedback field and
adjusts its sending rate accordingly.

A router maintains a fair-share rate R for each output
interface. This rate R is the maximum rate allowed for flows
going through this interface during the current control interval
T. T is set to be a moving average of RTTs of seen packets. At
the beginning of every control interval the QFCP controller
estimates the number of flows traversing this interface as:

() ()
()TtR

tytN
−

= , (1)

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1938

where y is the input traffic rate measured in the last interval T,
and R(t-T) is the flow rate feedback given in the last control
interval. Then the controller updates its fair-share rate R as:

()
()

()tN
T

tq
C

tR
⋅−

=
β

, (2)

where C is the capacity of the output link, q is the minimum
queue length observed in the last control period T, and β is a
constant of 0.5. When a packet arrives at a router, the
controller compares the value in the rate-request field with its
own fair-share rate R and copies the smaller value back into
that field. This rate-request field will eventually be copied into
the rate-feedback field of the corresponding ACK packet and
sent back to the sender by the receiver. On receiving an ACK,
the sender reads the feedback and adjusts its congestion
window as:

()MSSRTTfeedbackcwnd ,max ⋅= , (3)
where feedback is the routers’ feedback on flow rate, RTT is
the round-trip time measured by the sender, and MSS is the
maximum segment size. Thus, flows can send data at the
highest rate allowed by all routers along the path, while
routers periodically update the fair-share rate based on flow
number estimation.
 Due to the inability to set the exact capacity of a wireless
link, we need to design an adaptive algorithm that can finds
and sets this capacity parameter by itself. We observe that the
output traffic rate can be used to estimate the link capacity for
an active network interface and we add the following formula
in QFCP for link bandwidth probing:

()



⋅+
≥

=
elseC

qifoutput
C

,1
1,

α
, (4)

where q is the minimum queue length in packets observed in
the last control interval, output is the output traffic rate, and α
is a constant of 0.1. The basic idea is as following:
• If the minimum queue length q is greater than or equal to

one packet, which means the output interface is busy and
keeps sending data in the last control interval, then the
output traffic rate can be a good estimation of the current
link capacity.

• If the minimum queue length is less than one packet,
which means the output link is sometimes idle and
underutilized during the last control interval, we can try to
multiplicatively increase the link capacity estimation by a
factor (1+α) and wait a control interval to see whether the
queue is going to build up.

For a sender in lossy wireless environment, it had better
differentiate two kinds of packet loss: for non-congestion-
related loss (bit error), it should maintain the current window
size; and for congestion-related loss (buffer overflow), it
should slow down to prevent congestion collapse.
Unfortunately, currently router-assisted congestion control
protocols can not do such differentiation yet. For example,
XCP simply inherits the standard TCP behavior when
encountering packet loss [6]. That is, on receiving three

duplicate ACKs, the congestion window cwnd is halved; and
on retransmit timeout, cwnd is set to one. The assumption is
that packet loss may reveal a congested non-XCP router in the
path and transiting to standard TCP behavior is a conservative
response. However, if we are sure that all routers along the
path support router-assisted congestion control, such slow-
down reaction should be unnecessary for packet loss caused
by bit error.
 For TCP, the sender has to slow down on detecting packet
loss because packet loss is the congestion signal for TCP. This
is due to the design rationale of TCP congestion control: a
TCP flow keeps increasing its sending rate and intentionally
fills up the buffer of the bottleneck router to generate packets
drops; through this approach TCP finds the available capacity
of the path. But for router-assisted approach, since congestion
information has already been wrapped in the special packet
header and communicated to the sender, the sender should not
insist treating packet loss as congestion signal now. In stead, it
should use the information in the congestion header to adjust
its congestion window. For example, in QFCP, if the loss is
congestion-related, the rate feedback in subsequent ACK (or
dup-ACK) will tell the sender to slow down; but if it is non-
congestion-related loss, the subsequent rate feedback will
probably be similar to the current sending rate of this flow.
 We suggest that separate the data reliability control from
congestion control when receiving duplicate ACKs. When the
sender receives a duplicate ACK, it suggests that a data packet
has successfully reached the receiver but its sequence number
is greater than that expected by the receiver. Thus, for data
reliability control, upon reception of 3 duplicate ACKs, the
sender should retransmit the packet with the expected
sequence number. While for congestion control, when a QFCP
sender receives a duplicate ACK, it adjusts the congestion
window to:

dupACKnumRTTfeedbackcwnd _+⋅= (5)
where feedback is the rate feedback from routers, RTT is the
sender’s estimation of round-trip time, num_dupACK is the
number of duplicate ACKs received. The inherent idea is that
the sender temporarily keeps the successfully-transferred but
not-in-order packets in buffer and opens the congestion
window so that it can continue sending data at the router-
allowed rate. The counter num_dupACK is reset to zero when
a new ACK packet arrives and cumulatively acknowledges all
data packets sent before the detection of the loss. Note that we
do not address complicate situations such as loss of the
retransmission packet here and leave them for future study.
 XCP is a little different from QFCP. QFCP directly uses the
fair-share flow rate as the feedback and this rate is not
changed during the current control interval. The rate feedback
information in any single ACK is sufficient for us to compute
the target window size. But for XCP, we may not be able to
compute the correct window size base on the feedback when
encountering loss. Because in XCP, each ACK carries unique
per-packet feedback information on window adjustment and
the information carried on lost packets may not be negligible.
Any packet loss will cause mismatching between the actual
window size of the sender and the target window size

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1939

expected by the routers. XCP-r [7] suggests computing the
congestion window size at the receiver side and sending the
value back to the sender through ACK packets. This
modification on XCP only deals with ACK loss but packet
loss on the forward path may still cause the window
mismatching problem. Another possible solution is to keep the
window unchanged on non-congestion loss and halving the
window on congestion loss. But firstly we need to distinguish
the two kinds of loss in XCP. Intuitively we may say if the
feedback is positive, it is non-congestion-related loss; and if
the feedback is negative, it is congestion-related loss.
However, the feedback is also used for fairness control. A
negative feedback may possibly only want to change the
flow’s rate toward fair-share rate and may not necessarily
suggest congestion. Halving the cwnd or change cwnd to 1 is
too aggressive for this case. But if the loss is congestion-
related, window adjusting only based on feedback may be not
enough since some feedback on window reduction may be lost.
In sum, unlike QFCP, it is not so easy for XCP to differentiate
the two kinds of packet loss based on feedback information.
 While for packet loss event triggered by retransmit timeout,
since no feedback information available at this instant and the
loss may be caused by severe congestion, conservatively set
congestion window to one should be better. And if this is not a
congestion loss, any subsequent ACK will recover the
congestion window to the proper size in QFCP.
 In addition, if a router drops packets due to buffer overflow,
it should also sum up the number of dropped packets and use
the virtual queue length when running the control algorithm.
That is, substitute q in the algorithm with

dropnumqqvirtual __ += . (6)
Thus, if packets are dropped by routers, the feedback
computed using the virtual queue length can still precisely
reflect the congestion condition.

III. PERFORMANCE EVALUATION

A. Flow Completion Time
Research on the Internet traffic has revealed an important

feature at the flow level: most of the flows are very short,
while a small number of long flows account for a large portion
of the traffic [8], [9]. This is also known as the heavy-tailed
distribution. For fixed-size flows (e.g., FTP, HTTP), the most
attractive performance criterion is the flow completion time
(FCT). Here we simulate a scenario where a large number of
Poison-arriving Pareto-distributed-size flows share a single
bottleneck link of 150 Mbps. The total flow number is 60000.
The common Round-Trip Propagation Delay (RTPD) of all
flows is 100 ms. Flows arrive as a Poison process with an
average rate of 625 flows per second. The packet size is 1000
bytes. The flow sizes are Pareto distributed with a mean of 30
packets and a shape parameter of 1.2. Thus, the offered traffic
load on the bottleneck link can be estimated as: 8 ∗
packet_size ∗ mean_flow_size ∗ flow_arrival_rate / bandwidth
= 1. We record the size and completion time for each flow in
the simulation, then average the flow completion time for
flows with the same size.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60

Flow Size (packets)

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

TCP

XCP
RCP

QFCP

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

30

Flow Size (packets)

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

TCP

XCP
RCP

QFCP

(a) all flows (b) flows with size < 3000 packets

Fig. 1. Average flow completion time (AFCT) vs. flow sizes for Poison-
arriving Pareto-distributed-size flows. (a) is the global picture for all flows.
(b) is a close look at short flows

Note that in order to make the result more accurate, we
don’t wait for all flows to finish, but stop the simulation just
on the arrival of the 60000th flow. The reason is that the
offered traffic load may drop after the arrival of the last flow,
since all active flows are going to finish but no new flow is
going to join. Each simulation is conducted for each protocol:
TCP-Reno, XCP [4], RCP [5], and QFCP. The scenario
settings and the input data (i.e., the size and arriving time of
each flow) are identical for each simulation. The results show
that the Average Flow Completion Time (AFCT) in QFCP is
significantly shorter than that in TCP, XCP or RCP.

For TCP, the AFCT is very oscillatory again the flow size.
The reason is that although the exponential increase of
congestion window in Slow Start does help some short flows
finish quickly, the duration of other flows are prolonged due
to packet loss. And we should point out that Slow Start is not
a good way to shorten the duration of flows, because it
actually does not know the proper initial sending rate but just
intends to fill up the buffer of routers and cause packet losses,
which prolongs the flow duration.

For XCP, it does not use Slow Start. Instead, when new
flows join, XCP tries to reclaim the bandwidth from the
ongoing flows and reallocate it to the new flows little by little.
For short flows they may finish before reaching the fair
sending rate. That is why the completion time of short flows in
XCP is the longest. However, the AFCT against flow size in
XCP is more stable than in TCP because XCP flows
experience fewer packet losses.

For RCP and QFCP, both of them give a high initial
sending rate to new flows based on the feedback from routers
and help short flows finish quickly. However, the formula
used in RCP to estimate the number of flows holds only when
the input traffic just fills up the link capacity C, otherwise it
leads to wrong estimation of the flow number. This wrong
estimation of flow number makes the rate allocation in RCP
under-optimum and thus prolongs the FCT in general
compared with QFCP.

B. Fairness of Bandwidth Allocation
In this simulation there are twelve flows start transferring

data at time 0. Flows are randomly generated in both
directions, either from a node in the wired network to a
wireless node in the IEEE 802.11 WLAN (downloading) or

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1940

opposite (uploading). The flows’ round-trip propagation
delays vary from 40 ms to 370 ms. We use the Jain Fairness
Index [10] to evaluate the fairness of bandwidth allocation
among competing flows:

∑

∑

=

=

⋅










= n

i
i

n

i
i

xn

x
J

1

2

2

1

where xi is the average throughput of flow i during a interval
and n is the number of flows. We compute the Jain Fairness
Index every 1 second.

0 5 10 15 20 25 30
0

10

20

30

40

50

Simulation Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

(a) Congestion window of 12 QFCP flows

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

Simulation Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

(b) Congestion window of 12 TCP flows

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Simulation Time (seconds)

F
ai

rn
es

s
(J

ai
n

In
de

x)

QFCP

TCP

(c) Jain Fairness Index

Fig. 2. Twelve flows in both directions sharing a wireless link

For QFCP, although the wrong estimation of wireless link
capacity causes some throughput oscillations at the beginning,
its effect is alleviated shortly after 2-3 seconds since the
probing algorithm in QFCP controller finds the correct
bandwidth value (Fig. 2(a)). Then the bandwidth is allocated
equally among flows because the same rate feedback is sent to
all flows. The senders open their congestion window
proportional to their RTTs (i.e., cwnd = feedback * RTT) and
achieve good fairness on the throughput (Fig. 2(c)).

TCP also has its embedded algorithm to probe the available
bandwidth, which is the additive increase multiplicative
decrease (AIMD) algorithm. AIMD has been proved that it
can help flows with the same RTT achieve fairness on
throughput. However, as shown in Fig. 2(b), TCP’s
performance degrades significantly in this scenario. One
reason is that flows with short RTTs grow their windows
faster than flows with long RTTs (e.g., the different slopes of
incensement in Fig. 2(b)). Another more important reason is
that a wireless link is simplex, and downloading and
uploading flows compete for this wireless channel. But all
downloading flows have only one node (the base station) to
contend for the media access while each uploading flow has
its own node to contend. The result is that downloading flows
are unable to gain their fair share of the wireless bandwidth
using TCP and keep sending at very low rates. Fig. 2(c)
confirms that TCP’s fairness index is low in this scenario.
While for QFCP, since it takes control of all packets in both
directions on simplex wireless links, it fairly allocates the
bandwidth among all flows.

C. Robustness to Wireless Loss

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Simulation Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

QFCP lossy flow

QFCP lossless flow
XCP-b lossy flow

XCP-b lossless flow

Fig. 3. One lossy flow competing with one lossless flow

 This scenario tests for the protocol’s sensitivity to non-
congestion-related loss. A uniform loss model is injected into
the wireless link so that it can randomly generate non-
congestion-related loss at a fixed probability. The packet loss
rate we have investigated varies from 0.0001 to 0.1 and covers

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1941

most typical loss rates seen in a wireless network. Due to
space restriction, here we just demonstrate typical results of
packet loss rate = 0.01. The bandwidth parameter C is initially
set to 1 Mbps since we do not know the exact bandwidth
capacity for each wireless node and expect the probing
algorithm to find it. The minimum round-trip time is 200 ms.
We compare the performance of QFCP and XCP-b in this
scenario.
 XCP-b [11] is a XCP variant enhanced with an algorithm to
probe the available bandwidth when the link capacity is
unknown. However, it does not take packet loss into account.
As shown in Fig. 3, XCP-b cannot maintain a large congestion
window when bit-error packet loss happens randomly. Its
congestion window is frequently halved or set to one due to
packet loss. This window shrinking significantly reduces the
flow rate and prevents the probing algorithm of XCP-b to
work efficiently. Furthermore, when one lossy flow competes
with one lossless flow, XCP-b treats the lossy flow as a
congested flow and unfairly allocates bandwidth between
them.
 As mentioned before, packet loss is not treated as
congestion signal in QFCP. It does not halve the window upon
receiving three duplicate ACKs, so it can maintain a large
window even in a lossy environment. However, sometimes
packet loss is not recovered by the retransmission upon three
duplicate ACKs and RTO may occur (e.g., loss of
retransmission packet). In this case, since no router feedback
carried on an ACK is available, QFCP conservatively set the
window to one packet (e.g., around 17 seconds in Fig. 3). But
if this is a non-congestion-related loss, any subsequent ACK
will recover the window to the proper size. For the situation of
one lossy flow competing with one lossless flow, QFCP can
fairly allocate the bandwidth resource between them. This
simulation shows that it is important to take care of non-
congestion-related loss when designing congestion control
schemes for wireless environments. A bandwidth probing
algorithm that works well on lossless link may fail on lossy
links.

IV. CONCLUSION

Quality of Service has been studied extensively for real-
time multimedia flows. However, it is a little strange that the
service quality of other common TCP flows (HTTP, FTP,
email transfer, etc.) has seldom been studied. In this paper we
point out that TCP suffers performance degradation in high-
speed wired-cum-wireless networks. In order to improve the
QoS we propose a router-assisted congestion control protocol
named Quick Flow Control Protocol (QFCP). Through
simulations using NS-2 and compared with other existing
protocols, we show that QFCP can significantly shorten flow
completion time, allocate bandwidth resource fairly among
competing flows, and be robust to non-congestion-related loss.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, "TCP Congestion Control,"
RFC2581 1999.

[2] J. Pu and M. Hamdi, "New Flow Control Paradigm for Next Generation

Networks," in Proceedings of IEEE Sarnoff Symposium, Princeton, New
Jersey, USA, 2006.

[3] A. Jain, S. Floyd, M. Allman, and P. Sarolahti, "Quick-Start for TCP
and IP," in IETF Internet-draft, work in progress, 2005.

[4] D. Katabi, M. Handley, and C. Rohrs, "Congestion Control for High
Bandwidth-Delay Product Networks," in Proceedings of Proceedings of
ACM SIGCOMM '02, 2002, pp. 89-102.

[5] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown,
"Processor Sharing Flows in the Internet," in Proceedings of
International Workshop on Quality of Service, 2005.

[6] A. Falk, Y. Pryadkin, and D. Katabi, "Specification for the Explicit
Control Protocol (XCP)," Internet Draft 2006.

[7] D. M. Lopez-Pacheco and C. Pham, "Robust transport protocol for
dynamic high-speed networks: enhancing the XCP approach," in
Proceedings of 13th IEEE International Conference on Networks, Kuala
Lumpur, Malaysia, 2005, pp. 404-409.

[8] M. E. Crovella and A. Bestavros, "Self-similarity in World Wide Web
traffic: evidence and possible causes," IEEE/ACM Transactions on
Networking, vol. 5, pp. 835-846, 1997.

[9] K. Claffy, G. Miller, and K. Thompson, "The Nature of the Beast:
Recent Traffic Measurements from an Internet Backbone," in
Proceedings of Proceedings of INET '98, 1998.

[10] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling: John Wiley & Sons, 1991.

[11] F. Abrantes and M. Ricardo, "XCP for shared-access multi-rate media,"
ACM SIGCOMM Computer Communication Review, vol. 36, pp. 27-38,
2006.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1942

